
MATERIALS AND METHODS  

Study site and experimental design  

The experiment was conducted in the Kiel Outdoor Benthocosm (KOB) system in the Kiel 
Fjord, Germany, a mesocosm infrastructure comprising twelve independent 1500 L tanks. The 
KOBs are located on a float moored outside the GEOMAR Helmholtz Centre for Ocean 
Research Kiel (54.330216°N, 10.149815°E). For a detailed description of the KOB 
infrastructure, the experimental setup, and the specific environmental conditions of this 
experiment, see Wahl et al., (2015) and Wahl et al., (2021), respectively. The experiment ran 
for a total of 132 days (~4.5 months) between May 2nd and September 11th 2018. The 
mesocosms were supplied with through-flowing fjord water, and the entire water volume of 
each tank was replaced about seven times per day.  

Six warming scenarios were implemented, ranging from naturally fluctuating (ambient) fjord 
temperatures to +5 °C above ambient (0–5 °C in 1 °C increments), representing a gradient of 
marine heatwave intensities. The warming treatments covered the range of temperature 
increases projected to occur in the Baltic Sea by 2050 to 2200 (under the RCP8.5 scenario; 
Meier et al., 2022). In 2018, natural Kiel Fjord temperatures were characterised by 
considerable temperature fluctuations and two recorded naturally occurring marine 
heatwaves encompassing an extremely warm summer (SI Fig. S1). Details on the average, 
maximum and range of temperatures observed are presented in SI Table S1.  

The experimental set-up, which addresses the urgency of multiple drivers approaches (Boyd 
et al., 2018), here warming and upwelling, in realistically large and complex communities 
(1500 L mesocosms, holding multiple species), constitutes a non-replicated regression design 
(see below for information on the statistical analysis). Regression designs are commonly 
applied in experiments of this scale (Cottingham et al., 2005; Melzner et al., 2020; Taucher et 
al., 2017; Wahl et al., 2021) and are powerful in that they allow us to capture the nature of 
the ecological responses, such as non-linearities and potential tipping points (Boyd et al., 
2018; Kreyling et al., 2018; Riebesell et al., 2023).  

Temperature, salinity, pH, and oxygen levels were consistently monitored throughout the 
experiment (SI Fig. S2). In half of the twelve tanks, the added warming of 0–5 °C was 
interrupted by three simulated upwelling events (July 3rd – 9th, August 4th – 11th, and August 
28th – September 3rd, 2018; SI Figs S1–S2) by switching to another water intake pipe at 14 
meters depth (i.e., below the thermocline). Upwelled waters were cooler, poorer in oxygen, 
lower in pH, and more saline (SI Fig. S2), which is characteristic of upwelling events in the Kiel 
Fjord during the summer season (Wahl et al., 2021). Oxygen levels were low, and the water 
was hypoxic (<2 mg L-1), mainly during the third simulated upwelling event (SI Fig. S2). For 
more in-depth information about the warming scenarios, temperature fluctuations over the 
study period, and simulated upwelling, see Wahl et al., (2021).  

  

Set-up and sampling of the mesocosm communities  

At the start of the experiment, a benthic community representative of shallow coastal 
ecosystems in the area was reconstructed in each tank. Similar biomasses of the native brown 
algae Fucus vesiculosus and Fucus serratus were added to the tanks, as well as their associated 
mesograzers at mean densities found in the macroalgae on the sampling date. Due to a later 
start in their growth season, fronds of the non-indigenous red alga Gracilaria vermiculophylla 



were distributed into the tanks 50 days into the experiment (Wahl et al., 2021). The 
mesocosm community was largely untouched during the experiment, with only minor 
biomasses of Fucus or G. vermiculophylla being removed or added (Wahl et al., 2021). As the 
inflowing water to the tanks was not filtered, natural recruitment of filter feeders and 
mesograzers occurred over the course of the experiment. Epiphytic algae were not removed, 
as these also occur under natural conditions.   

As substrate for the natural recruitment of soft-bottom fauna during the experiment, plastic 
containers filled with sieved (1 mm) and homogenised sand were placed at the bottom of 
each tank. For the recruitment of hard-bottom fauna and flora, settlement panels (PVC) were 
hung from the side wall of each tank (see SI Table S2 for details on the experimental units). 
For further details on the stocking of the tank communities, see Wahl et al., 2021).  

At the end of the experiment, the mesocosms were sampled for abundance and biomass data 
for all species within the tanks. Diverse sampling methods were employed for the different 
components of the experimental tanks (detailed in SI Table S2). Using certain methods, only 
abundance data were recorded (SI Table S2). In these cases, we estimated average biomasses 
for species using either quantified average body masses for conspecifics present in other parts 
of the tanks or by consulting available literature on average body masses of these species (SI 
Methods, SI Table S3). For a more comparable estimate of the final community at the tank 
level, biomass estimates of species from the different tank components were scaled (see SI 
Table S2 and SI Methods). All species in the mesocosms were identified to the lowest possible 
taxonomic level (genus or species), except for microphytobenthos, phytoplankton, and 
detritus, which were aggregated into one node in the food web (i.e. Microalgae and Detritus).  

Two predator species, the common sea star Asterias rubens and the green shore crab Carcinus 
maenas, were housed in separate compartments of the mesocosms but were not allowed to 
directly interact with or feed on the community that recruited in the mesocosms. 
Consequently, their role and impact considered in the food web analyses reflect potential, 
and not realised, interactions and energy flows.  

  

Trophic network construction   

Food webs are composed of nodes (S) and links (L) representing species and trophic 
interactions, respectively (Table 1, Fig. 1a). Trophic species can correspond to biological 
species, groups of organisms that share the same set of predators and prey, and non-living 
components of matter and energy, such as detritus (Dunne et al., 2002). Data on trophic 
interactions were collated through an extensive literature review of diet and feeding studies, 
expanding on previous work from the Baltic Sea (Kortsch et al., 2021; Olivier et al., 2024). 
Constructing food webs based on trophic interactions observed in the literature is common 
practice in food web studies (Delmas et al., 2019; Poisot et al., 2016). This approach 
represents ‘potential’ rather than ‘realised’ interactions among species. Here, we did not aim 
to document realised interactions but to illustrate the potential loss of both trophic and non-
trophic interactions as species composition changes – whether through loss or gain – in 
response to environmental stressors. Following a thorough review process, some taxa still 
lacked sufficient diet information. In a few cases (8% of the final dataset), we inferred links by 
assuming that closely related species (species of the same genus or family) share predators 
and prey (Frelat et al., 2022; Olivier et al., 2019). The final data set underwent further 



verification in consultation with experts at GEOMAR Kiel, Germany. The constructed metaweb 
(Fig. 1) is available with references at Zenodo [DOI to be added].  

  

Non-trophic network construction  

In addition to feeding relationships, non-trophic interactions are important for structuring 
coastal communities. To investigate how non-trophic interactions change as a response to 
warming scenarios and upwelling, we mapped the following among the mesocosm species 
(Fig. 1): competitive (-/-), antagonistic (-/+), amensalistic (-/0), commensalistic (+/0), and 
mutualistic (+/+) interactions. Non-trophic interactions related to sediment burrowing 
activities (e.g., by clams) were not considered. Competitive interactions were derived from 
the food web by identifying species sharing prey items, and therefore potentially competing 
for the resource. Competitive interactions related to the node ‘Microalgae and Detritus’ were 
excluded, assuming that there is no limitation of these resources in the tanks. All other non-
trophic interactions were based on a thorough literature review, local expert knowledge, and 
personal observations.   

The metaweb for multiple interaction types consists of 188 links, out of which 114 are non-
trophic interactions (Fig. 1). 60% of the non-trophic interactions are competitive, mostly 
involving mesograzers or top consumers. Most of the positive non-trophic interactions 
(commensalism and mutualism) arise through the structure or habitat provided by 
macrophytes to mesograzers, whereas herbivore partial grazing on basal species (non-lethal 
for the algae) constitutes the antagonistic interactions. Among herbivore species, the snails 
Hydrobia spp. and Littorina spp. were prominent, with a majority of their links being 
competitive non-trophic links (Fig. 1). Among the top consumers, the crab C. maenas and the 
polychaete H. diversicolor have the highest numbers of non-trophic links, mainly competitive 
interactions for prey items shared with other consumers. The non-trophic metaweb, along 
with references, can be accessed at Zenodo [DOI to be added]. To assess how non-trophic 
network structure varied across warming and upwelling scenarios, the network property 
number of non-trophic links was quantified.  

  

Unweighted and weighted trophic network properties   

To assess how food web structure and functions varied across the warming scenarios and the 
upwelling events, we quantified seven unweighted (topological) and two weighted (flux-
based) network properties. The topological properties, which consider presence/absence of 
nodes and interactions only, include number of species (S), number of trophic links (L), 
connectance (C), mean generality (G), mean trophic level (TL), and the mean level of omnivory 
(Omni; Table 1). In addition to these, we also assigned energy fluxes to the interactions using 
a bioenergetic food web modelling approach, which allows estimating food web functions 
such as changes in carnivorous fluxes and herbivorous fluxes. This bioenergetic modelling 
approach is based on allometric scaling relationships between metabolism, body mass, and 
temperature (Brown et al., 2004), and assumes a steady state, implying that energy lost by a 
species through predation and metabolic processes is balanced by the metabolised energy 
gained from consumption (Barnes et al., 2018; Gauzens et al., 2019; Jochum et al., 2021). For 
more detail on the bioenergetic model and model parameterisation, consult the 
supplementary information (SI Methods).  



To test for the sensitivity of the fluxes and the herbivory and carnivory functions, we randomly 
sampled 1000 biomass estimates for each trophic species from a normal distribution with a 
mean equal to the originally estimated biomasses at the tank level and a standard deviation 
of 0.3. This resulted in 1000 different flux estimates per treatment, for which a median flux 
was calculated. Energy fluxes were calculated using the ‘fluxweb’ R package (Gauzens et al., 
2019), and the food web metrics were calculated using custom-written code. The R package 
‘igraph’ (Csárdi & Nepusz, 2006) was used to create the trophic as well as the non-trophic 
network graphs. The R code is available via Zenodo on GitHub [DOI to be added].   

  

Statistical and numerical analyses  

To analyse the relationships between biomass changes, food web metrics, and applied 
treatments (i.e., warming scenarios and upwelling events), we applied Generalized Additive 
Models (GAMs). We used the gam function from the R package ’mgcv’ (Wood, 2017), which 
allows for the flexible modelling of non-linear relationships using smooth functions. Three 
sets of GAM models were fitted for each biomass or metric, each with different distribution 
assumptions. Each model includes smooth terms for warming and warming by upwelling 
interactions, allowing for different responses to warming at each upwelling level, or only 
s(warming) and upwelling, or only s(warming). Model selection was based on Akaike’s 
Information Criterion (AIC). Specifics about the fitted models, including their random effects, 
link functions, smooth terms, and error distributions are provided in the SI Methods and in SI 
Tables S4–S5. Further, to examine the most important associations among the food web 
metrics and functions, and warming and upwelling treatments, we applied a principal 
component analysis (PCA) using the R package ’factoextra’ (Kassambara & Mundt, 2020).   
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